Prediction of Gas Concentration Based on the Opposite Degree Algorithm
نویسندگان
چکیده
In order to study the dynamic changes in gas concentration, to reduce gas hazards, and to protect and improve mining safety, a new method is proposed to predict gas concentration. The method is based on the opposite degree algorithm. Priori and posteriori values, opposite degree computation, opposite space, prior matrix, and posterior matrix are 6 basic concepts of opposite degree algorithm. Several opposite degree numerical formulae to calculate the opposite degrees between gas concentration data and gas concentration data trends can be used to predict empirical results. The opposite degree numerical computation (OD-NC) algorithm has greater accuracy than several common prediction methods, such as RBF (Radial Basis Function) and GRNN (General Regression Neural Network). The prediction mean relative errors of RBF, GRNN and OD-NC are 7.812%, 5.674% and 3.284%, respectively. Simulation experiments shows that the OD-NC algorithm is feasible and effective.
منابع مشابه
Electrofacies clustering and a hybrid intelligent based method for porosity and permeability prediction in the South Pars Gas Field, Persian Gulf
This paper proposes a two-step approach for characterizing the reservoir properties of the world’s largest non-associated gas reservoir. This approach integrates geological and petrophysical data and compares them with the field performance analysis to achieve a practical electrofacies clustering. Porosity and permeability prediction is done on the basis of linear functions, succeeding the elec...
متن کاملSurface Pressure Contour Prediction Using a GRNN Algorithm
A new approach based on a Generalized Regression Neural Network (GRNN) has been proposed to predict the planform surface pressure field on a wing-tail combination in low subsonic flow. Extensive wind tunnel results were used for training the network and verification of the values predicted by this approach. GRNN has been trained by the aforementioned experimental data and subsequently was used ...
متن کاملTransparent Machine Learning Algorithm Offers Useful Prediction Method for Natural Gas Density
Machine-learning algorithms aid predictions for complex systems with multiple influencing variables. However, many neural-network related algorithms behave as black boxes in terms of revealing how the prediction of each data record is performed. This drawback limits their ability to provide detailed insights concerning the workings of the underlying system, or to relate predictions to specific ...
متن کاملNatural Gas Price Forecasting using Kriging Interpolation Technique and Neldar-Mead Optimization Algorithm
The prediction of economic series with high volatility and high uncertainty - such as natural gas prices - is always a challenge in econometric models, because the use of traditional linear modeling models does not allow us to predict complex and nonlinear time series. Regarding the prediction of natural gas prices, findings point to superiority of the neural network compared to regression mod...
متن کاملPREDICTION OF SLOPE STABILITY STATE FOR CIRCULAR FAILURE: A HYBRID SUPPORT VECTOR MACHINE WITH HARMONY SEARCH ALGORITHM
The slope stability analysis is routinely performed by engineers to estimate the stability of river training works, road embankments, embankment dams, excavations and retaining walls. This paper presents a new approach to build a model for the prediction of slope stability state. The support vector machine (SVM) is a new machine learning method based on statistical learning theory, which can so...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016